A new discrete velocity method for Navier–Stokes equations
نویسنده
چکیده
The relation between the Lattice Boltzmann Method, which has recently become popular, and the Kinetic Schemes, which are routinely used in Computational Fluid Dynamics, is explored. A new discrete velocity model for the numerical solution of Navier–Stokes equations for incompressible fluid flow is presented by combining both the approaches. The new scheme can be interpreted as a pseudo-compressibility method and, for a particular choice of parameters, this interpretation carries over to the Lattice Boltzmann Method.
منابع مشابه
Optimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملInvestigation of instable fluid velocity in pipes with internal nanofluid flow based on Navier-Stokes equations
In this article, the instable fluid velocity in the pipes with internal nanofluid is studied. The fluid is mixed by SiO2, AL2O3, CuO and TiO2 nanoparticles in which the equivalent characteristic of nanofluid is calculated by rule of mixture. The force induced by the nanofluid is assumed in radial direction and is obtained by Navier-Stokes equation considering viscosity of nanofluid. The displac...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملIsogeometric Divergence-conforming B-splines for the Steady Navier-Stokes Equations
We develop divergence-conforming B-spline discretizations for the numerical solution of the steady Navier-Stokes equations. These discretizations are motivated by the recent theory of isogeometric discrete differential forms and may be interpreted as smooth generalizations of Raviart-Thomas elements. They are (at least) patchwise C and can be directly utilized in the Galerkin solution of steady...
متن کاملOptimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations
A fully discrete penalty finite element method is presented for the two-dimensional time-dependent Navier-Stokes equations. The time discretization of the penalty Navier-Stokes equations is based on the backward Euler scheme; the spatial discretization of the time discretized penalty Navier-Stokes equations is based on a finite element space pair (Xh,Mh) which satisfies some approximate assumpt...
متن کامل